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Problem Statement 
 
Computation with discrete, combinatorial structures has become essential to the DOE mission in many 
areas of data analysis, complex systems modeling, and scientific computation, most of which now require 
extreme-scale computation in both the numerical and discrete domains [Ale2011, Bro2008, Keg2008].  
However, the field of high-performance combinatorial computing is in its infancy, and current algorithms 
for combinatorial computation do not scale well on high-performance parallel computers. 

 
In the well-developed field of numerical computing, programmers possess standard algorithmic 
primitives, high-performance software libraries, powerful rapid-prototyping tools, and a deep 
understanding of effective mappings of problems to high-performance computer architectures.  A key 
challenge of the transition to exascale is to replicate these achievements for computational discrete 
mathematics.   
 

 
 
 
Linear algebra has played a crucial (one might almost say magical) role as “middleware” between 
continuous physical models to be computed and the simple arithmetic operations implemented by actual 
computer hardware.  From a mathematical point of view, graph theory occupies a similar position as 
middleware between models of discrete structures and actual computers.  However, for the most part 
computational graph theory still lacks the above-mentioned standard primitives, software libraries, rapid-
prototyping tools, and connections to machine architecture. 
 
We recommend research leading to the development of mathematical tools and algorithmic primitives for 
exascale graph computation that play roles analogous to those of the BLAS (standard primitives) and of 
LAPACK and ScaLAPACK (high-performance libraries for key algorithms).  
 
State of the Art 
 
What would it mean to complete the analogy between linear algebra as middleware for continuous 
physical modeling, and graph theory as middleware for analysis of discrete structures?   This asks  
us to reflect on the steps that evolved numerical linear algebra from mathematical linear algebra 
(“numerical” here means “computational”), and to similarly develop a computational graph theory.   



 
Among the questions we must ask are:  What is a good set of primitive representations and operations for 
computational graph theory?  How can such primitives be implemented so that both functionality and 
performance are portable across a range of modern computers?  How should such primitives be presented 
to the user as APIs, programming patterns, languages, interactive environments?  How should we evaluate 
these tools from the points of view of performance, expressivity, and productivity?  Here we propose 
specific directions to explore for the answers to these questions. 
 
A sparse graph can be represented by a sparse array of edges (indexed by head and tail vertices), which in 
turn can be considered as a sparse matrix data structure for the graph’s adjacency matrix.  Linear algebraic 
operations on this matrix correspond to some kinds of graph operations; for example, multiplying a sparse 
matrix by a dense vector systematically explores all the neighbors of each vertex.  We have reported 
[KepGil2011] the results of a study showing that sparse linear algebraic operations on semirings are a 
powerful set of primitives that can be used to implement a surprisingly wide variety of graph 
computations.  The key is to allow arbitrary user-defined semirings, including the familiar (+,*) ring, but 
also (min,+), (and,or), and others. 
 
The most powerful algebraic primitives include: SpGEMM (sparse matrix-matrix multiplication); SpAdd 
(sparse matrix-matrix addition); SpMV (sparse matrix-dense vector multiplication); SpRef (selection of a 
subarray of a sparse matrix); SpAsgn (assignment to a subarray of a sparse matrix) and SpCat 
(concatenation of sparse arrays), all with the possibility of substituting different objects for numerical 
array elements and different operations for scalar addition and multiplication.  SpGEMM has not been 
studied extensively by the numerical linear algebra community, although sequential SpGEMM algorithms 
appear in Matlab [GilMolSch1992, Dav2007] and as far back as Gustavson [Gus1978].   
 
We have developed high-performance scalable parallel implementations of SpGEMM and related 
primitives [BulGil2008, BulGil2012], as part of our Combinatorial BLAS library [BulGil2011].  We have 
used the Combinatorial BLAS as the computational kernel of our high-level Knowledge Discovery 
Toolbox [Bul2013] for analysis of attributed semantic graphs.  This latter work uses just-in-time 
specialization to achieve high performance on graph computation with arbitrary semirings specified in a 
high-level language. 
 
 
Recommendations 
 

• Develop mathematical and algorithmic primitives for sparse linear algebraic computation on 
semirings, including representations of graphs and hypergraphs in terms of edge-vertex incidence 
matrices, allowing computation in a mixture of different semirings. 

• Establish a robust research effort in mathematically informed co-design of graph algorithms and 
architectures, with a view to enabling high-peformance low-power execution of crucial primitive 
operations. 

• Extend the existing set of algebraic graph primitives into a common framework that coherently 
integrates algebraic, visitor, and map-reduce patterns in a concise library of primitives that will 
interoperate cleanly for edge-based, vertex-based, and traversal-based algorithms. 

• Combine combinatorial and numerical functionality in an integrated set of algebraic primitives, 
enabling the seamless combination of graph computation and numerical computation in such 
techniques as spectral clustering, belief propagation, hidden Markov methods, support vector 
machines, latent Dirichlet analysis, etc. 

• Bring together the research community working on graph algorithms expressed as linear algebra 
to define a common API for the "BLAS 1/2/3"-level primitives that can be used for research and 
development of higher-level graph algorithms. 
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